【欧拉计划第 6 题】和的平方与平方的和差值 Sum square difference
Problem 6 Sum square difference
The sum of the squares of the first ten natural numbers is:
$$
\large 1^2+2^2+3^2+\cdots+10^2=385
$$
The square of the sum of the first ten natural numbers is:
$$
\large (1+2+3+\cdots+10)^2=55^2=3025
$$
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is:
$$
\large 3025 - 385 = 2640
$$
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
问题 6 和的平方与平方的和差值
前十个自然数的平方的和为:
$$
\large 1^2+2^2+3^2+\cdots+10^2=385
$$
而前十个自然数和的平方为:
$$
\large (1+2+3+\cdots+10)^2=55^2=3025
$$
因此,前十个自然数的平方和与和的平方之间的差是:
$$
\large 3025 - 385 = 2640
$$
求前一百个自然数的平方和与和的平方之间的差
思路分析
自然数的平方的和通项公式
$$
\large S(1)=\frac{n(n+1)(2n+1)}{6}
$$
自然数和的平方通项公式
$$
\large S(2)=\left ( \frac{n(n+1)}{2} \right )^2
$$
则和的平方与平方和差值通项公式为
$$
\large S(n)=S(2)-S(1)=\left ( \frac{n(n+1)}{2} \right )^2-\frac{n(n+1)(2n+1)}{6}
$$
$$
\large =\frac{n(n-1)(n+1)(3n+2)}{12}
$$
代码实现
1 | /* |
答案:25164150